当前位置: 首页 > 学习资料 > 高中语文试题 >

2021年北京高考语文试题及参考答案

来源:海博学习网 www.exam58.com    发布时间:2021-09-06 15:08
2021年北京高考语文试题
一、本大题共5小题,共17分。
阅读下面材料,完成1-5题。
材料一
机器学习是一种人工智能技术,它通过设计算法,让计算机可以从有限的观测数据中分析并获取规律,然后利用“学习”到的规律对未知数据进行预测,从而帮助人们完成应用任务。运用机器学习解决应用问题,一般包含如下几步:首先是对观测数据作预处理,然后是从观测数据中提取有效特征并对特征进行转换,最后是构建函数并利用它进行预测。
传统的机器学习主要关注预测函数的构建,至于特征,则一般是通过人为地设计一些准则,然后根据这些准则从观测数据中获得。对机器而言,这可看作是一种“浅层学习”。由于浅层学习有时不能很好地获得有助于提升预测准确率的特征,“深度学习”应运而生。
深度学习需要构建具有一定“深度”的模型,让机器自动从观测数据中学习到有效的特征,帮助提升预测的准确率。“深度”与数据处理过程的组件数量密切相关,深度模型的原始输入与输出结果之间有多个组件,每个组件都会对数据进行加工,并影响后续组件。当得到最终的输出结果时,我们并不清楚每个组件的贡献是多少,判断每个组件对输出结果的影响称为“贡献度分配”问题。以下围棋为例,每当下完一盘棋,我们会思考哪几步棋导致了最后的胜利或失败,判断每一步棋贡献的多少就是贡献度分配问题。该问题在深度学习中至关重要,解决起来也非常困难。
目前,深度学习大多采用“人工神经网络”来实现。人工神经网络内部包含多个层次,正好能满足深度学习的“深度”需求。近年来,深度学习技术快速发展,其所使用的人工神经网络模型从早期的五至十层增加到目前的数百层,这极大提高了特征提取与转换的能力,也使预测的准确率随之上升。
深度学习技术被广泛应用于模式识别、自然语言处理等诸多领域并取得了重大突破。我们要想在方兴未艾的科技革命中占有先机,牢固掌握以深度学习为代表的人工智能技术是必要条件。
1.根据材料一,下列表述正确的一项是(3分)(    )
A.机器学习的最终目的是从数据中寻找到某种规律。
B.机器学习从数据中学到的规律可以用函数来表示。
C.机器学习完成特征提取与转换后就可以进行预测。
D.浅层学习无需人工干预,完全依赖机器自主完成。
2.根据材料一,下列对“深度学习”的理解与推断,不正确的一项是(3分)(    )
A.可以更好地处理数据特征,更准确地预测。         B.数据处理过程中的组件数量会影响其深度。
C.数据处理过程中影响最大的组件不难确定。         D.是人工智能技术的代表,已有广泛的应用。
材料二
人脑神经系统是一个非常复杂的组织,包含几百亿个神经元。神经元与神经元之间没有物理连接,它们通过突触进行互联来传递信息。神经元可被看作是只有兴奋和抑制两种状态的细胞,突触将一个神经元的兴奋状态传至另一个神经元。突触有强有弱,其强度可以通过学习或训练来不断改变,具有一定的可塑性。一个神经元的状态是兴奋还是抑制,取决于它从其他神经元接收到的信号量以及突触的强度。当一个神经元接收到的信号量总和超过了某个阈值,细胞体就会兴奋,产生电脉冲,电脉冲通过突触传递到其他神经元。可以认为,在人脑神经系统中,每个神经元本身固然重要,但更重要的是神经元如何组成网络。
受人脑的启发,科学家构建了一种在结构、工作原理和功能上都模拟人脑神经系统的计算模型,称之为“人工神经网络”,简称“神经网络”。在机器学习领域,神经网络指由很多人工神经元相互连接构成的系统,这些人工神经元一般被称为节点,每个节点本质上是一个函数。神经网络不同节点间的连接被赋予了不同的权重,每个权重表示一个节点对另一个节点影响的大小。每个节点的“兴奋”或“抑制”,由来自其他节点的数据信息与节点间的连接权重综合计算得到。
深度学习利用神经网络构建模型,可以对数据进行更好的特征提取与特征转换,从而得到预测准确率更高的函数。除了神经网络模型,深度学习也可以采用“深度信念网络”等其他类型的模型。但由于神经网络能借助相关算法较好地解决贡献度分配问题,它成为了深度学习主要采用的模型。
(以上两则材料取材于邱锡鹏的相关著作)
3.根据材料二,下列对人脑神经系统的理解,不正确的一项是(3分)(    )
A.一个神经元是兴奋还是抑制的状态不全由其自身决定。
B.一个神经元接收到其他神经元的电脉冲以后就会兴奋。
C.人脑神经系统中神经元本身不如神经元如何组网重要。
D.人脑神经系统启发了深度学习中一种主要模型的构建。
4.根据材料一和材料二,下列理解与推断,不正确的一项是(3分)(    )
A.人工神经网络在自然语言处理等诸多领域是无可替代的。
B.深度学习进行预测的能力与其模型的层次数量密切相关。
C.沟通不同神经元的突触的强度不是恒定的,可以被改变。
D.人工神经网络模型被深度学习采用有不止一方面的原因。
5.根据以上两则材料,说明深度学习“应运而生”的原因,以及人工神经网络在深度学习中的作用。(5分)
二、本大题共6小题,共24分。
阅读下面文言文,完成6-10题。(共18分)
夫儒生,礼义也;耕战,饮食也。贵耕战而贱儒生,是弃礼义求饮食也。使礼义废,纲纪败,上下乱而阴阳谬,水旱失时,五谷不登,万民饥死,农不得耕,士不得战也。故以旧防为无益而去之,必有水灾;以旧礼为无补而去之,必有乱患。儒者之在世,礼义之旧防也,有之无益,无之有损。夫礼义,无成效于人,然成效者须[1]礼义而成。犹足蹈路而行,所路之路须不蹈者;身须手足而动,动者待不动者。故事或无益,而益者须之;或无效,而效者待之。儒生,耕战所须待也,弃而不存,如何?
韩子非儒,谓之无益有损,盖谓俗儒无行操,举措不重礼,以儒名而俗行,以实学而伪说,贪官尊荣,故不足贵。夫志洁行显,不徇爵禄,去卿相之位若脱躧者,居位治职,功虽不立,此礼义为业者也。国之所以存者,礼义也。民无礼义,倾国危主。今儒者之操,重礼爱义,率无礼义士,激无义之人。人民为善,爱其主上,此亦有益也。闻伯夷风者,贪夫廉,懦夫有立志;闻柳下惠风者,薄夫敦,鄙夫宽。此上化也,非人所见。
段干木【2】阖门不出,魏文【3】敬之,表式其闾,秦军闻之,卒不攻魏。使魏无干木,秦兵入境,境土危亡。秦,强国也,兵无不胜,兵加于魏,魏国必破,三军兵顿,流血千里。今魏文式阖门之士,却强秦之兵,全魏国之境,济三军之众,功莫大焉,赏莫先焉。
齐有高节之士,曰狂谲、华士,二人昆弟也,义不降志,不仕非其主。太公封于齐,以此二子解沮【4】齐众,开不为上用之路,同时诛之。韩子善之,以为二子无益而有损也。
夫狂谲、华士,段干木之类也,太公诛之,无所却到;魏文侯式之,却强秦而全魏,功孰大者?狂谲、华士之操,干木之节也,使韩子善干木阖门之节、高魏文之式是也,则善太公之诛非也。使韩子非干木之行,下魏文之式,则干木以此行而有益,魏文用式之道为有功;是韩子不赏功、尊有益也。
(取材于王充《论衡·非韩》)
注释:【1】须:等待,这里是依靠的意思。【2】段干木:战国时魏国隐士。【3】魏文:魏文候,战国初魏国君主。【4】解沮:瓦解、涣散。
6.下列对句中加点词的解释,不正确的一项是(3分)(    )
A.贵耕战而贱儒生           贱:轻视
B.使礼义废,纲纪败         使:假如
C.故以旧防为无益而去之     防:防备
D.薄夫敦,鄙夫宽           敦:敦厚
7.下列各组语句中,加点词的意义和用法都相同的一组是(3分)(    )
A.上下乱而阴阳谬          故事或无益,而益者须之
B.以旧礼为无补而去之      以此二子解沮齐众
C.此礼义为业者也          国之所以存者
D.人民为善                开不为上用之路
8.下列对文中语句的理解,不正确的一项是(3分)(    )
A.以儒名而俗行                名义上是儒生,行动却跟一般人一样
B.不徇爵禄                    不为了爵位和俸禄而牺牲自己的生命
C.此上化也,非人所见           这是最高的教化,不是常人能看到的
D.非干木之行、下魏文之式       指责干木的操行、贬低魏文扶轼致敬
9.根据文意,下列理解与推断,不正确的一项是(3分)(    )
A.韩非认为儒生没有用处只有害处,本文认为儒生很有用处,不应抛弃。
B.本文赞赏魏文侯向段干木扶轼致敬的做法,认为功劳很大,无法超越。
C.韩非认为留着狂谲、华士没有好处只有坏处,因而赞赏太公杀了他们。
D.本文认为狂谲、华士与段干木是同一类人,对保全国家没有什么用处。
10.本文第一段体现了相反相成的思想,即相互对立的事物之间也有相互依赖、相互促成的一面。请结合本段相关语句,用自己的话谈谈作者是如何阐明这一思想的。(6分)
11.阅读下面《论语》中的文字,回答问题。(6分)
子曰:“由也!女闻六言【注】六蔽矣乎?”对曰:“未也。”
“居!吾语女。好仁不好学,其蔽也愚;好知不好学,其蔽也荡;好信不好学,其蔽也贼;好直不好学,其蔽也绞;好勇不好学,其蔽也乱;好刚不好学,其蔽也狂。”(《阳货》)
【注】言:德。
孔子为什么把学习与道德修养联系在一起?请从“六言六蔽”中任选两个,用自己的话加以解释。




------分隔线----------------------------